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Abstract In this note we introduce the concept of vector network equilibrium flows when
the ordering cone is the union of finitely many closed and convex cones. We show that the set
of vector network equilibrium flows is equal to the intersection of finitely many sets, where
each set is a collection of vector equilibrium flows with respect to a closed and convex cone.
Sufficient and necessary conditions for a vector equilibrium flow are presented in terms of
scalar equilibrium flows.

Keywords Vector network equilibrium flow · Nonconvex ordering · Solution set · Vector
variational inequality

1 Introduction

Following the introduction of Wardrop’s principle [8] for equilibrium flows in traffic net-
works that considers only the minimum delay criterion, there have been generalizations of
the principle that consider multiple criteria. Indeed, in the real world, people in choosing a
path to travel consider not only minimum delay but also other factors such as cost, safety and
convenience. Such generalizations have been considered by [1] and [3]. Under the symmetry
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assumption for vector-valued cost functions, vector variational inequalities have been derived
as a necessary optimality condition for a vector equilibrium flow. In those discussions, the
ordering cone was assumed to be convex. The model of vector variational inequalities was
introduced by [2].

Recently, [7] (See also [4]) considered a nonconvex ordering for vector optimization prob-
lems, which seeks to generalize existing results from a theoretical perspective. Following this
trend, we introduce in this paper the concept of vector equilibrium flows when the ordering
cone is the union of finitely many closed and convex cones. We show that this set of vector
equilibrium flows is equal to the intersection of finitely many sets, where each set is a collec-
tion of vector equilibrium flows with respect to a closed and convex cone. We note that [4]
have recently obtained such a relation between a vector variational inequality and a vector
optimization problem. In this note we obtain sufficient and necessary conditions for vector
equilibrium flows in terms of a scalar equilibrium flow.

2 A model for vector equilibria with nonconvex orderings

Consider a transportation network G = (N , A), where N denotes the set of nodes and A the
set of arcs. Let I be the set of origin-destination (O-D) pairs and Pi (i ∈ I) denote the set of
available paths joining the O-D pair i . For a given path p ∈ Pi , let h p denote the traffic flow
on this path and h = [h p] ∈ IRM , M = ∑

i∈I |Pi |. A path flow vector h induces a flow va

on each arc a ∈ A given by:

va =
∑

i∈I

∑

p∈Pi

δaph p,

where δap = 1 if arc a belongs to path p and 0 otherwise. � = [δap] ∈ IR|A|×M is the arc
path incidence matrix. Let v = [va] ∈ IR|A| be the vector of arc flows. We assume that the
demand di ≥ 0 of traffic flow is fixed for each O-D pair i ∈ I. Let

H =
⎧
⎨

⎩
h | h ≥IRM+ 0,

∑

p∈Pi

h p = di ∀i ∈ I
⎫
⎬

⎭

be the feasible set.
Let ta(v) ∈ IRr be the vector cost for arc a (including such cost elements as time delay,

monetary cost and others) and be in general a function of all the arc flows. The (vector) cost
τp ∈ IRr along a path is assumed to be the sum of all the arc costs along this path; thus

τp(h) =
∑

a∈A
δapta(v).

Vector equilibrium principles have been considered in the literature when the ordering
cone is convex. In this note we discuss these principles when the ordering cone is not neces-
sarily convex. In particular, we assume that the ordering cone is the union of finitely many
closed and convex cones, with a nonempty interior. That is, K = ⋃l

j=1 K j and int K �= ∅,
where each K j ( j = 1, . . . , l) is a nonempty, closed, pointed and convex cone of IRr .

For simplicity, we adapt the following notation for the orderings. Given a closed cone
S ⊂ IRr with int S �= ∅, the pre-orderings ≤S\{0},≤int S, �≤S\{0}, and �≤int S are defined as:
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for ξ, η ∈ IRr ,

ξ ≤S\{0} η ⇐⇒ η − ξ ∈ S\{0};
ξ ≤int S η ⇐⇒ η − ξ ∈ int S;

ξ �≤S\{0} η ⇐⇒ η − ξ �∈ S\{0};
ξ �≤int S η ⇐⇒ η − ξ �∈ int S.

The pre-orderings ≥S\{0},≥int S, �≥S\{0} and �≥int S are defined similarly.

Definition 2.1 Given a flow h ∈ H, we say that

(i) a path p ∈ Pi for an O-D pair i is efficient if there does not exist another path p′ such
that τp′(h) ≤K\{0} τp(h);

(ii) a path p ∈ Pi for an O-D pair i is weakly efficient if there does not exist another path
p′ such that τp′(h) ≤int K τp(h).

Let �i (h) = {τp(h), p ∈ Pi } denote the (discrete) set of vector costs for all the paths
of O-D pair i . Let IK

i (h) = {k ∈ Pi | τk(h) �≥K\{0} τp(h), ∀p ∈ Pi } ⊆ Pi and
WIK

i (h) = {k ∈ Pi | τk(h) �≥int K τp(h), ∀p ∈ Pi } ⊆ Pi denote the index sets of all the
efficient paths and weakly efficient paths for O-D pair i , respectively.

We define respectively the efficient frontier and weak efficient frontier for O-D pair i and
K to be sets of efficient points and weak efficient points in the cost-space of O-D pair i as
follows:

MinK (�i (h)) = {ξ ∈ IRr | ξ = τp(h) where p ∈ IK
i (h)},

Minint K (�i (h)) = {ξ ∈ IRr | ξ = τp(h) where p ∈ WIK
i (h)}.

The sets IK j
i (h), MinK j (�i (h)), WIK j

i (h) and Minint K j (�i (h)) , j = 1, . . . , l are defined
similarly.

In [1], a vector Wardrop’s principle was proposed, where the ordering cone K is closed
and convex. The following definition for vector Wardrop’s principle doesn’t assume the
convexity of the ordering cone K .

Definition 2.2
(i) A path flow vector h ∈ H is said to be in vector equilibrium for K if

∀i ∈ I,∀p, p̄ ∈ Pi , h p = 0 whenever τp(h) − τ p̄(h) ≥K\{0} 0. (1)

(ii) A path flow vector h ∈ H is said to be in weak vector equilibrium for K if

∀i ∈ I,∀p, p̄ ∈ Pi , h p = 0 whenever τp(h) − τ p̄(h) ≥int K 0.

By S and WS, we denote the sets of all the vector equilibrium flows and all the weak
vector equilibrium flows for K , respectively. By S j and WS j , we denote the sets of all
the vector equilibrium flows and all the weak vector equilibrium flows for K j , respectively.
When K = IRr+, the above definitions reduce to the ones in [3].

Theorem 2.1 We have the following results:

(i) S = ⋂l
j=1 S j ;

(ii) WS = ⋂l
j=1 WS j .
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Proof

(i) Suppose that h ∈ S is a vector equilibrium flow for K . For each fixed j ( j = 1, . . . , l),
we want to prove h ∈ S j . Let i ∈ I and p, p̄ ∈ Pi . Suppose that τp(h)−τ p̄(h) ≥K j \{0}.
From the definition of K , it is also true that τp(h) − τ p̄(h) ≥K\{0} 0. It follows from
Eq. (1) that h p = 0. Thus h is a vector equilibrium flow with respect to K j , i.e., h ∈ S j .
Thus h ∈ ⋂l

j=1 S j . So h ∈ ⋂l
j=1 S j .

Conversely, suppose that h is a vector equilibrium flow with respect to each K j , j =
1, . . . , l. Let i ∈ I and ∀p, p̄ ∈ Pi . Suppose that τp(h) − τ p̄(h) ≥K\{0} 0. From the
definition of K , there exists a j0 such that τp(h) − τ p̄(h) ≥K j0 \{0} 0. By the definition
of h ∈ K j0 , h p = 0. So h is also a vector equilibrium flow with respect to K , i.e.,
h ∈ S. Thus

⋂l
j=1 S j ⊂ S. Thus, (i) holds.

(ii) The proof is similar to that of (i), but replacing K\{0} and K j\{0} by int K and int K j ,
respectively. �


Remark 2.1 As a consequence of Theorem 2.1, the existence of a (weak) vector equilibrium
flow when the ordering cone is a union of some convex cones is equivalent to that all sub-
problems (each with a convex cone) have a common one, while the existence of such a flow
for each subproblem can be obtained using the existence result of a scalar equilibrium flow
(see [5]) and the relation between a vector equilibrium flow and a scalar one (see [3]).

Now we give an example to illustrate the result of Theorem 2.1.

Example 2.1 Consider a network flow problem that consists of two nodes x and y, two arcs
a and b, and a single O-D pair w = (x, y). Assume the travel demand for w is dw = 4. The
path cost functions from IR2 to IR3 are, respectively,

τp1(h) = (h p1 , h p1 , h p1) and τp2(h) = (h p2 , h p2 , 2h p2),

where p1 and p2 denote two paths, which consist of arcs a and b, respectively. Suppose that
K = ⋃3

j=1 K j , where K1, K2 and K3 are given by

K1 = {(x, y, z) ∈ IR3 | (2x − 1.5z)2 + (2y − z)2 ≤ z2, x ≥ 0, y ≥ 0, z ≥ 0},
K2 = {(x, y, z) ∈ IR3 | (2x − z)2 + (2y − (1 + √

3/2)z)2 ≤ z2, x ≥ 0, y ≥ 0, z ≥ 0},
and

K3 = {(x, y, z) ∈ IR3 | (2x − 2z)2 + (2y − (1 + √
3/2)z)2 ≤ z2, x ≥ 0, y ≥ 0, z ≥ 0}.

Naturally, K is a nonconvex cone. From Definition 2.2 (i), we have that the sets of all the
vector equilibrium flows for K1, K2 and K3 are, respectively,

S1 = {(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4 and h p2 < h p1}
⋃

{(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4, h p2 ≥ h p1 and 0.25h2
p1

+ 5h p1 h p2 > 3h2
p2

},
S2 = {(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4 and h p2 < h p1}

⋃

{(h p1 , h p2) ∈ R2+ | h p1 + h p2 = 4, h p2 ≥ h p1

and (1 − √
3/2)2h2

p1
+ (2

√
3 + 1)h p1 h p2 > h2

p2
},

S3 = {(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4 and h p1 < 2h p2}
⋃

{(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4, h p1 ≥ 2h p2

and (3/4 − √
3)h2

p1
+ (2

√
3 + 1)h p1 h p2 + 3h2

p2
> 0}.
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Thus, we get

S =
3⋂

j=1

S j

= {(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4 and h p2 < h p1 < 2h p2}
⋃

{(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4, h p1 ≥ 2h p2

and (3/4 − √
3)h2

p1
+ (2

√
3 + 1)h p1 h p2 + 3h2

p2
> 0}

⋃

{
(h p1 , h p2) ∈ IR2+ | h p1 + h p2 = 4, h p2 ≥ h p1 , 0.25h2

p1
+ 5h p1 h p2 > 3h2

p2

and (1 − √
3/2)2h2

p1
+ (2

√
3 + 1)h p1 h p2 > h2

p2

}
.

3 Sufficient and necessary conditions for vector equilibrium flows

For each K j , j = 1, . . . , l, we define its dual cone as

K ∗
j = {λ = (λ1, . . . , λr )

T ∈ IRr | λT x ≥ 0,∀x ∈ K j }.
Let a parametric λ ∈ K ∗

j \{0} be given. In [3], a path flow vector h is in λ-equilibrium for
K j if,

∀i ∈ I, ∀p ∈ Pi , h p = 0 whenever ∃ ei ∈ MinK j (�i (h)) , such that λ�τp(h) > λ�ei .

Theorem 3.1

(i) If there exists λ j ∈ int K ∗
j , j = 1, . . . , l such that h is in λ j -equilibrium for each K j ,

then h is in vector equilibrium for K .
(ii) If there exists λ j ∈ K ∗

j \{0}, j = 1, . . . , l, such that h is in λ j -equilibrium for each
K j , then h is in weak vector equilibrium for K .

Proof

(i) Since λ j ∈ int K ∗
j , it follows from Theorem 4 in [9] that h is in vector equilibrium

flow for K j . By Theorem 2.1 (i), h is in vector equilibrium flow for K .
(ii) Similarly from Theorem 4 in [9], we can conclude that h is in weak vector equilibrium

for K j . By Theorem 2.1 (ii), h is in weak vector equilibrium flow for K . �

For λ ∈ K ∗

j \{0}, we define the minimum scalarized cost for O-D pair i as:

ui (λ) = min
p∈Pi

λ�τp(h).

Let λ j ∈ int K ∗
j . Following the proof of Lemma 2.1 in [3], we have, for some ei ∈

MinK j (�i (h)),

ui (λ) = λ�ei .

Thus, for λ ∈ int K ∗
j , h is in λ-equilibrium for K j if and only if the following condition

holds:

∀i ∈ I,∀p ∈ Pi , h p = 0 whenever λ�τp(h) > ui (λ).
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Let a parameter λ ∈ K ∗
j \{0} be given. Since an λ-equilibrium flow is based on a scalar

cost, it follows from [5] that h is in λ-equilibrium for K j if and only if h satisfies, for all
i ∈ I, p ∈ Pi ,

(λ�τp(h) − ui (λ))h p = 0, (2)

λ�τp(h) − ui (λ) ≥ 0, (3)
∑

p∈Pi

h p − di = 0, (4)

h ≥ 0, ui (λ) ≥ 0. (5)

Thus, from Theorem 3.1, we have the following result.

Theorem 3.2

(i) If there exist some λ j ∈ int K ∗
j , j = 1, . . . , l, such that h satisfies Eqs. (2–5) where

λ = λ j , for all i ∈ I, p ∈ Pi , then h is in vector equilibrium for K .
(ii) If there exist some λ j ∈ K ∗

j \{0}, j = 1, . . . , l, such that h satisfies Eqs. (2–5) with

λ = λ j , for all i ∈ I, p ∈ Pi , then h is in weak vector equilibrium for K .

Corollary 3.1 If there exists some λ ∈ (
∑l

j=1 K j )
∗\{0} such that h satisfies Eqs. (2–5), for

all i ∈ I, p ∈ Pi , then h is in weak vector equilibrium for K .

Proof Since K1, . . . , Kl are nonempty and convex cones, it follows from Corollary 16.4.2
in [6] that

⎛

⎝
l∑

j=1

K j

⎞

⎠

∗
= ∩l

j=1 K ∗
j .

By Theorem 3.2 (ii), the result holds. �
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